1	(i)	$R=W \cos \alpha$ Magnitude is 96 N			For resolving forces perpendicular to the plane
	(ii)	Magnitude is 24 N	B1	1	AG From correct work.
	(iii)	$\begin{aligned} & P=100 \times 0.28-24 \\ & P=100 \times 0.28+24 \end{aligned}$ (a) $P=4$ (b) $P=52$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	For resolving 3 forces parallel to the plane (either case)

2	(i)	Momentum of A and B before collision $=0.4 \times 6-1.2 \times 2$ Momentum of A and B after collision $=0.4 v+1.2 \times 1$ $\begin{aligned} & 0.4 \times 6-1.2 \times 2=0.4 v+1.2 \times 1 \\ & (v=-3) \end{aligned}$ Speed is $3 \mathrm{~ms}^{-1}$ Direction is away from B	B1 B1 M1 A1 A1 ft 5	Alternatively: Momentum lost by $A=0.4 \times(6-v)$ B1 Momentum gained by B $=1.2 \times(1+2)$ For using the principle of conservation of momentum Positive answer only ft from v
	(ii)	$1.2 \times 1-4 m=-1.2 \times 0.5+2 m$ $\text { or } 1.2 \times 1+1.2 \times 0.5=4 m+2 m$ $m=0.3$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	For momentum equation :- with lhs correct with rhs correct
				SR If mgv used for momentum instead of mv, then (i) Speed is $3 \mathrm{~ms}^{-1} \quad$ B1 Direction is away from $B \quad \mathrm{~B} 1 \mathrm{ft}$ (ii) $\mathrm{m}=0.3 \quad \mathrm{~B} 1$

3	(i)(a)	$X=2 \times 8 \cos 30^{\circ}-5 \sin 40^{\circ}$ Component is 10.6 N	M1 A1 A1 ft	For resolving 3 forces parallel to the x-axis ft for 4.17 from $\sin /$ cos mix only
	(i)(b)	$Y=5 \cos 40^{\circ}$ Component is 3.83 N	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \mathrm{ft} \end{aligned}$	ft for 3.21 from sin/cos mix only
	(ii)	$R^{2}=10.64^{2}+3.83^{2}$ Magnitude is 11.3 N $\tan \theta=3.83 / 10.64$ Direction is 19.8° anticlockwise from +ve x-axis	M1 A1 ft M1 A1 ft 4	For using $R^{2}=X^{2}+Y^{2}$ For using $\tan \theta=Y / X$

4	(i)	Acceleration is $1+0.2 t$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \\ \hline \end{array}$	For using $a=\dot{v}(t)$
	(ii)	$t=9$ $\begin{aligned} & s(9)=9^{2} \div 2+9^{3} \div 30-(0+0) \\ & (=40.5+24.3) \end{aligned}$ Distance is 64.8 m	M1 A1 M1* A1 A1 dep*M1 A1 ft 7	For solving $a(t)=2.8$ for t For integrating $v(t)$ to find $s(t)$ For $t^{2} \div 2$ correct in $s(t)$ For $t^{3} \div 30$ correct in $s(t)$ For correct use of limits or equivalent ft their $a=\dot{v}(t)$ from (i)

5	(i)	Heights are $7 t-1 / 2 g t^{2}$ and $10.5 t-1 / 2 g t^{2}$	B1 1	
	(ii)	Expression is 3.5t	B1	From correct (i)
	(iii)	$\begin{aligned} & 0=7-9.8 t \\ & t=5 / 7 \text { or } 0.714 \\ & \text { Difference is } 2.5 \mathrm{~m} \end{aligned}$	M1 A1 A1 ft 3	For using $v=u-g t$ with $v=0$ ft value of t
	(iv)	$t=1$ Greater than $5 / 7$ (may be implied) or $7-\mathrm{g} \times 1$ is -ve Direction is downwards	B1 ft M1 A1 3	For using ans(ii) $=3.5$ correctly For comparing this t with the time to greatest height or considering the sign of v_{A} for this t
	(v)	$h_{\mathrm{A}}=7 \times 1-1 / 29.8 \times 1^{2}$ Height is 2.1 m	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	For using $h=u t-1 / 2 \mathrm{gt}^{2}$ with relevant t

6	(i)	Accelerating for 4 s	$\begin{aligned} & \hline \text { M1 } \\ & \\ & \text { A1 } \end{aligned}$	For using the idea that the gradient represents acceleration or for using $v=u+a t$
	(ii)	$A B=1 / 2(16+20) 8$ Distance is 144 m	A1ft A1 3	For using the idea that the distance is represented by the area of the trapezium or using suitable formulae for the two stages of the journey
	(iii)		B1 B1 2	Graph is single valued and continuous and consists of two straight line segments with one segment from the origin and the other parallel to the t axis Graph for Q is the reflection of the graph for P in the t axis
	(iv)		B1 B1 B1 3	Graph is single valued and continuous and consists of two parts, one of which is a straight line segment, with x increasing from 0 for the interval $0<t<20$ $x_{\mathrm{P}}(20)$ appears to be equal to $x_{\mathrm{Q}}(0)$ Graph for P appears to be the reflection in $x=$ ans(ii) $\div 2$ of graph for Q
	(v)	$\begin{aligned} & \mathrm{t}=20-(1 / 2144 \div 8) \\ & \text { or } 16+8(\mathrm{t}-4)=128-8(\mathrm{t}-4) \text { or } \\ & \text { equivalent } \\ & \text { Value of } t \text { is } 11 \end{aligned}$	M1 $\text { A2 } 3$	For complete method of finding the required time

7	(i)	$\begin{aligned} & T-F=0.3 a \\ & 0.2 g \sin 70^{\circ}-T=0.2 a \\ & R=0.3 g \\ & F=0.4(0.3 g) \\ & 0.2 g \sin 70^{\circ}-0.4(0.3 g)=0.5 a \\ & \text { Acceleration is } 1.33 \mathrm{~ms}^{-2} \\ & \text { Tension is } 1.58 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		For applying Newton's second law to either particle For using $F=\mu R$ For eliminating F and T or a
	(ii)	$\begin{aligned} & a=-0.4 g \\ & 0=1.5^{2}-2 \times 3.92 \mathrm{~s} \\ & \text { Distance is } 0.287 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		May be scored in (iii) For using $v^{2}=u^{2}+2 a s$ with $v=0$
	(iii)	$\begin{aligned} & 0=1.5-3.92 t \\ & t=0.383(\text { may be implied }) \\ & a=g \sin 70^{\circ} \\ & s=1.5(0.383)+1 / 29.8 \sin 70^{\circ}(0.383)^{2} \\ & \qquad(=0.574+0.674) \end{aligned}$ Distance is 1.25 m	M1 A1f A1 B1 M1 A1	6	For using $v=u+$ at or equivalent with $v=0$ for A ft value of a from (ii) For acceleration of B For using $s=u t+1 / 2 a t^{2}$ or equivalent with $u \neq 0$

