1	(i)	$R = W\cos\alpha$	M1		For resolving forces perpendicular to the plane
		Magnitude is 96 N	A1	2	
	(ii)	Magnitude is 24 N	B1	1	AG From correct work.
[(iii)	$P = 100 \times 0.28 - 24$	M1		For resolving 3 forces parallel to the plane (either
		$P = 100 \times 0.28 + 24$			case)
		(a) $P = 4$	A1		
		(b) $P = 52$	A1	3	

2	(i)	Momentum of A and B before			Alternatively: Momentum lost by $A = 0.4 \times (6 - v)$
		$collision = 0.4 \times 6 - 1.2 \times 2$	B1		B1
		Momentum of A and B after			Momentum gained by B
		$collision = 0.4v + 1.2 \times 1$	B1		$= 1.2 \times (1+2)$ B1
		$0.4 \times 6 - 1.2 \times 2 = 0.4v + 1.2 \times 1$	M1		For using the principle of conservation of
		(v = -3)			momentum
		Speed is 3 ms ⁻¹	A1		Positive answer only
L		Direction is away from B	A1 ft	5	ft from v
	(ii)	$1.2 \times 1 - 4m = -1.2 \times 0.5 + 2m$			For momentum equation :-
		or $1.2 \times 1 + 1.2 \times 0.5 = 4m + 2m$			
			B1		with lhs correct
			B1		with rhs correct
L		m = 0.3	B1	3	
					SR If mgv used for momentum instead of mv,
					then
					(i) Speed is 3 ms ⁻¹ B1
					Direction is away from B B1 ft
					(ii) $m = 0.3$ B1

3	(i)(a)		M1		For resolving 3 forces parallel to the <i>x</i> -axis
		$X = 2 \times 8\cos 30^{\circ} - 5\sin 40^{\circ}$ Component is 10.6 N	A1 A1 ft		ft for 4.17 from sin/cos mix only
	(i)(b)	$Y = 5\cos 40^{\circ}$	B1		
	L	Component is 3.83 N	B1 ft	5	ft for 3.21 from sin/cos mix only
	(ii)	$R^2 = 10.64^2 + 3.83^2$	M1		For using $R^2 = X^2 + Y^2$
		Magnitude is 11.3 N	A1 ft		
		$\tan \theta = 3.83/10.64$	M1		For using $\tan \theta = Y/X$
		Direction is 19.8° anticlockwise			
		from +ve <i>x</i> -axis	A1 ft	4	

4	(i)		M1		For using $a = \dot{v}(t)$
		Acceleration is $1 + 0.2t$	A1	2	
[(ii)		M1		For solving $a(t) = 2.8$ for t
		t = 9	A1		
			M1*		For integrating $v(t)$ to find $s(t)$
			A 1		For $t^2 \div 2$ correct in $s(t)$
			A1		For $t^3 \div 30$ correct in $s(t)$
		$s(9) = 9^2 \div 2 + 9^3 \div 30 - (0+0)$	dep*M1		For correct use of limits or equivalent
		(=40.5+24.3)			
		Distance is 64.8 m	A1 ft	7	ft their $a = \dot{v}(t)$ from (i)

5	(i)	Heights are $7t - \frac{1}{2}gt^2$ and			
		$10.5t - \frac{1}{2}gt^2$	B1	1	
	(ii)	Expression is 3.5 <i>t</i>	B1	1	From correct (i)
	(iii)	0 = 7 - 9.8t	M1		For using $v = u - gt$ with $v = 0$
		t = 5/7 or 0.714	A1		
		Difference is 2.5 m	A1 ft	3	ft value of t
	(iv)	t = 1	B1 ft		For using $ans(ii) = 3.5$ correctly
		Greater than 5/7 (may be implied)	M1		For comparing this <i>t</i> with the time to greatest
		or 7 - $g \times 1$ is -ve			height or considering the sign of v_A for this t
		Direction is downwards	A1	3	
	(v)	$h_{\rm A} = 7 \times 1 - \frac{1}{2} 9.8 \times 1^2$	M1		For using $h = ut - \frac{1}{2}gt^2$ with relevant t
		Height is 2.1 m	A1	2	

6	(i)		M1		For using the idea that the gradient represents acceleration or for using $v = u + at$
		Accelerating for 4 s	A1	2	
	(ii)		M1		For using the idea that the distance is represented by the area of the trapezium or using suitable formulae for the two stages of the journey
		$AB = \frac{1}{2}(16 + 20)8$	A1ft		
L		Distance is 144 m	A1	3	
	(iii)				Graph is single valued and continuous and consists of two straight line segments with one segment from the origin and the other parallel
			B1 B1	2	to the <i>t</i> axis Graph for <i>Q</i> is the reflection of the graph for <i>P</i> in the <i>t</i> axis
	(iv)		B1 B1 B1	3	Graph is single valued and continuous and consists of two parts, one of which is a straight line segment, with x increasing from 0 for the interval $0 < t < 20$ $x_P(20)$ appears to be equal to $x_Q(0)$ Graph for P appears to be the reflection in $x = ans(ii) \div 2$ of graph for Q
	(v)	t = $20 - (\frac{1}{2} \cdot 144 \div 8)$ or $16 + 8(t-4) = 128 - 8(t-4)$ or equivalent Value of t is 11	M1 A2	3	For complete method of finding the required time
					SR Allow B1 for t = 11 without explanation

$F = \mu R$
ating F and T or a
ored in (iii)
$v^2 = u^2 + 2as \text{ with } v = 0$
v = u + at or equivalent with $v = 0$ for A
a from (ii)
ration of B
$s = ut + \frac{1}{2} at^2$ or equivalent with $u \neq 0$

4728